
Lubomir Gotsev Iva Kostadinova

BIG DATA ANALITIC TOOLS

Lubomir Gotsev

Iva Kostadinova

Big Data Analitic Tools

Big Data Analitic Tools

Study Guide

Academic Publisher "Za bukvite – O pismeneh" Sofia, 2022

This study is published as a result of research carried out within the project "Innovations for Big Data in a Real World" – iBigWorld - 2020 - 2022, financed by Erasmus+ "KA203 – Strategic Partnerships for higher education".

- © Lubomir Gotsev, Iva Kostadinova, authors, 2022
- © Vasyl Martsenyuk, Georgi Dimitrov, scientific editors, 2022
- $\ensuremath{\mathbb{C}}$ Lubomir Gotsev, Diana Stoyanova, design and cover, 2022
- © Academic Publisher "Za bukvite O pismeneh", 2022
- ISBN 978-619-185-572-8

Unlocking new insights from complex, vast, diverse, and massive quantities of data to accelerate digital transformation, innovation, and social sustainability is the primary objective of Big Data Analytics. It uses a palette of advanced techniques and approaches from emerging fields such as Data Mining, Machine Learning and Deep Learning for extracting valuable information. Various tools support and optimize knowledge discovery engineering.

In such a context, the short-term training aims to broaden the students' interest in data-driven projects as a novel paradigm in Industry 4.0 and Society 5.0, by answering a series of questions:

 $\hfill\square$ What acts in the Big Data value-chain paradigm?

□ What are the key technologies behind Big Data Analytics (BDA)?

□ What tools and software enable meaningful insight from big data?

 \Box What tools and software can be used for BDA with no or minimal coding skills?

Besides these questions, the training provides practical guides to particular tools that support and automate end-to-end data analytics, from data collection, cleansing, and transformation through model building, evaluation, and tuning, to visualization and communication of results.

The learning is based on real use-cases from various application domains to provide a comprehensive and clear understanding of which techniques and approaches are useful for particular data-driven problem and when and how to apply them through analytics tools.

The training is competences oriented utilizing learning-by-doing and case-based methods.

The course is offered to computer science students from University of Nis (Serbia), University of Library Studies and Information Technologies (Bulgaria) and University of Bielsko-Biala (Poland).

It is organized into sessions, including labs and workshop. The last is planned in two stages, starting with team building and followed by the development of data-driven projects in different application domains. Trainers with trainees choose the topics for the team projects, taking into account the academic background.

Certification of attendance was provided to all the participants.

Erasmus+

BIG DATA ANALYTICS TOOLS

STUDENTS TRAINING

PART OF BIG DATA ACADEMIC CLASS & WORKSHOP, 16-20 MAY 2022, SERBIA

PROJECT: INNOVAIONS FOR BIG DATA IN A REAL WORLD 2020-1-PL01-KA203-082197

PARTNERS

- University of Bielsko-Biala (UBB), Poland
- University of Library Studies and Information Technologies (ULSIT), Bulgaria
- University of Nis (UNi), Serbia
- Taras Shevchenko University of Kyiv (TSNUK), Ukraine

PARTICIPANTS

Students

- Four students from UBB, Poland
- Four students from ULSIT, Bulgaria
- Four students from UNi, Serbia

Trainers

- Four trainers from UBB, Poland
- Four trainers from ULSIT, Bulgaria
- Four trainers from Uni, Serbia
- Three trainers from TSUNK, Ukraine (online)

COUNTRY

Serbia

EVENT HOST University of Nis DATA 16 – 20 May 2022

ACADEMIC CLASSES & WORKSHOP SCOPE

Big Data Knowledge and Skills Development

ANALYTICS TOOLS WORKSHOP SCOPE

Skills-building in Data Mining and Machine Learning for Big Data Analytics

FORMAT

Lectures, Lab Sessions & Workshop

BIG DATA ANALITICS TOOLS

TRAINERS

ORGANIZATION

- Theoretical Background: Lectures, Individual Research Tasks, Quizzes
- Practical Sessions: Live and Video Demonstrations, Guidelines, Labs, Individual and Group Tasks
- Assessment: Final Group Project

LEARNING METHODS

- Learning-by-doing
- Real-Case and Project-based Learning

LECTURES

- 1. Data Analytics Overview (part one)
- Introduction
- Multi-Disciplinary Nature
- Actors & Processes
- Categories
- Methodologies
- Applications
- Trends

3. Analytics Tools Overview (part one)

• Big Data & AI Tools Landscape

2. 2. Data Analytics Overview (part two)

- Data Analytics Terminology
- Exploration Data Analysis (EDA) through Summary Statistics
- Exploration Data Analysis (EDA) through Visualization Techniques
- Data Quality Strategy
- Machine Learning for Big Data Analytics: Approaches, Techniques & Algorithms
- Popular BDA Solutions: Cloudera, SAP HANA, SAS Viya, Alteryx, Apache Ecosystem, Azure ML
- Languages: R & Python

Big Data Academic Class & Workshop

16 – 20 May 2022, Serbia

- OrangeTableau
- Ta

KNIME

IBM Watson

PRACTICAL SESSIONS (BASED ON REAL USE CASES)

Orange

Lab Sessions

Installing the software

4. Analytics Tools Overview (part two)

- Workspace (canvas) and components (widgets) familiarization
- Creating a workflow
- Work with built-in datasets
- Basic Data Exploration with Orange
- Feature Statistics
- Data Preparation
- Classification
- Regression
- Cluster Analysis

Workshop

Morning Session: Team building & final projects objective and tasks

Afternoon Session: Work in teams and preparing the project in informal envoironment

Final Projects

Morning Session: Teams Projects Presentations

PURPOSE

The training aims to achieve two primary goals in the learning path of Big Data.

Deepening the interdisciplinarity in the Big Data domain where Data Mining, Machine Learning, Data Science, and Advanced Analytics play a role as an approach palette to knowledge discovery. The lectures provide an overview of the Knowledge Discovery Paradigm based on Big Data, interdisciplinary links between fields, actors, and processes involved in Analytics, and potential applications, impact, and importance for business digital transformation, Industry 4.0, and Society 5.0.

of the European Union

Tableau

Lab Sessions

- Installing the software Tableau Public
- Data workspace and loading data
- Using limited preprocessing functionality
- Familiarization with visualization and analysis workspaces
- First visual analysis
- Exploring different visualization techniques
- Forecasting
- Clustering
- Dashboards
- Story

Resources:

- Especially designed videos or live demonstrations illustrating all tasks for the Lab Sessions
- Primary steps in training (for learners)
- Lab Session Notes for trainers
- Workflows of tasks
- Prebuild datasets and Links to data

Accelerating skill-building in Big Data Analytics by applying supervised and unsupervised approaches for regression, classification, clustering, and feature engineering through particular software tools (Orange, Tableau) following the learning-by-doing and project-based methods.

The training is competences oriented.

Competences

- Ability to select an efficient algorithm(s) for Big Data problem, which takes into consideration the scale.
- Ability to model, analyze, and evaluate an organization's business processes.
- Capability to choose the best sampling and filtering method(s) for a given big data analysis case.

• Effectively use a variety of data analytics techniques (Machine Learning, Data Mining, Prescriptive and Predictive Analytics).

- Apply quantitative techniques (statistics, time series analysis, optimization, and prediction).
- Using a wide range of Big Data analytics platforms.

Skills

• Capable of quickly adapting activities to new technologies.

• Able to perform an objective analysis of a data-driven problem and take appropriate actions to solve it through analytics tools.

• Compare analytics tools and specify differences between them by purpose, features, application domain, limitations and training.

- Identify, compare, and apply open-source and automated machine learning data analytics tool(s).
- Select and apply the most appropriate analytics tool(s) for a specific data-driven problem.
- Critically assess the data source, usefulness, and potential problems associated with the data.
- Upload, edit, save, and export data using analytics tools.
- Assure data quality through analytics tools.
- Apply and fit ML techniques to the analytical problem using the appropriate tool (s).
- Apply adequate model evaluation metrics and accurately interpret the analytics output.

• Use analytics tools for data visualization to present concepts/ideas/phenomena from a new perspective to decision-makers.

Disposition

Accurate in the selection and use of data analytics tools considering domain, defined data-driven problem and proposed solution design.

TOOLS

The following analytics tools are selected in order to accomplish the stated objectives while adhering to the logic of the learning path where the theoretical underpinnings of data mining have been covered.

ORANGE

Orange is a component-based visual programming open-source tool utilized for data mining, machine learning, data analysis and visualization.

Big Data Academic Class & Workshop

Components of Orange range from basic operations such as **data visualization**, **subset selection**, **and pre-processing** to more complex tasks such as the **evaluation of learning algorithms** in practice and the development of **predictive models**. It supports **bioinformatics**, **text**, **image**, **and signal processing add-ons**, as well as advanced analytics features.

Benefits

- Free open-source
- Visual programming
- Both no-coding and coding (Python)

Features

Limitations

- Not always reliable support
- No automatic parameter optimization
- Has error measurement but must rebuild

model each time

- Python 3 data mining library
- Interactive Data Visualization
- Add-ons Extended Functionality
- Manual parameter optimization

Training

- Blog, docs & online community support
- Classroom training
- Online tutorial and training videos

TABLEAU

Data visualization platform that can perform big data analytics.

It can leverage well-known frameworks such as **Apache Hadoop**, **Spark and NoSQL databases** to meet their data needs.

The vendor offers the following products: Tableau Online, Tableau Desktop, Tableau Prep, Tableau CRM and **Tableau Public (free).**

Benefits

- Responsive dashboards and reports all without writing a code
- Leverage a fast, in-memory processing engine
- Combine and analyze large data sets

Limitations

- Organizations are dependent on Tableau to maintain servers
- Challenges when interpreting complex business rules

Features

- One Data Interface
- Big Data Integrations
- VizQL (a visual query language for databases)
- Data Catalog

Training

- a library of free self-service training videos
- on-demand and live webinars
- e-learning and classroom training courses

ORANGE TRAINING

LAB SESSIONS

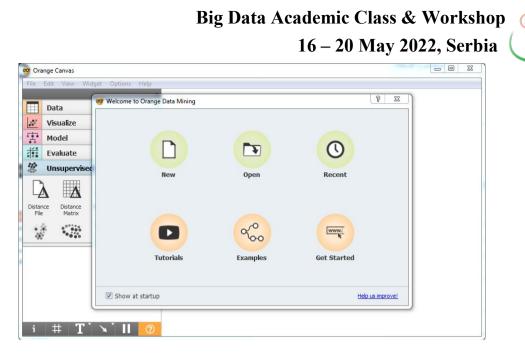
Objectives:

- Installing the software
- Familiarization with workspace (canvas)
- & components (widgets)
- Creating a workflow
- Work with built-in datasets
- Data Exploration

Objectives:

- Feature Statistics
- Data Preparation
- Prediction
- Cluster Analysis
- Text Analysis

INSTALLATION & FAMILIARIZATION OF ORANGE3

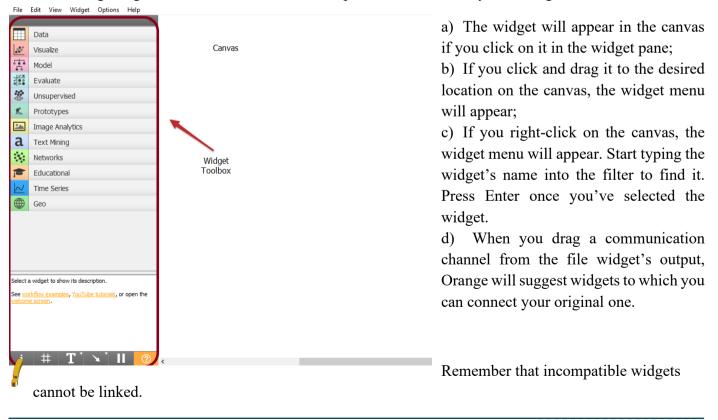

INSTALLATION STEPS

Step 1: Download and install Orange https://orange.biolab.si/download/

Step 2: Run the installer

Step 3: After installation, the Orange icon appears on your desktop; click it to open the Orange tool.

Step 4: You are greeted with an Orange welcome screen.



From here, it is possible to start a data analysis workflow, open a recent one, or explore tutorials. The first project can be initiated by choosing the "New" icon. Orange starts with a blank canvas.

WIDGETS AND CANVAS

According to their function, widgets are the computational building units of Orange's visual programming environment. They read, process, and visualize the data; utilize clustering; build predictive models, and otherwise help to explore the data. The widget pane is located on the left side of the screen.

Adding widgets to a workflow can be accomplished in several ways in Orange.

As soon as we open a File widget, we can load our data. It will show up in the canvas when you click on File. Double-click it to open the widget. Orange comes with many data files, and load one of them. You can, naturally, load your own data in simple steps.

D			File		_		x
• File:	sample.xlsx		•	<u>]]</u>		🛃 r	teload V
Data has	e(s), 6 feature no target vari s (Double click		tribute(s)				
1 func			feature	Drotoos	Docn	Dib	
				Proteas,	Resp,	RIDO	
2 spo		numeric	feature				
3 spo-	mid 🤇	numeric	feature				
4 heat	0	numeric	feature				
5 heat	10 🤇	numeric	feature				
6 heat	20	numeric	feature				
7 gen	e E	string	meta				
Browse d	ocumentation	data sets			Repo	ort	

So, double click the File widget icon to open it, then click the file browser icon ("...") to locate the downloaded (in the current case, called sample.xlsx) file on your disk.

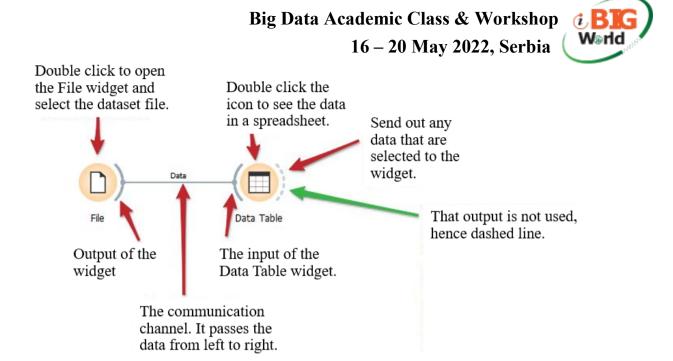
The File widget allows for the configuration of file types and roles. Attributes have roles (input features, meta attributes, and target/class) and can be numeric, categorical, date/time, or textual. Additionally, they can be modified via the File widget.

Big Data Academic Class & Workshop

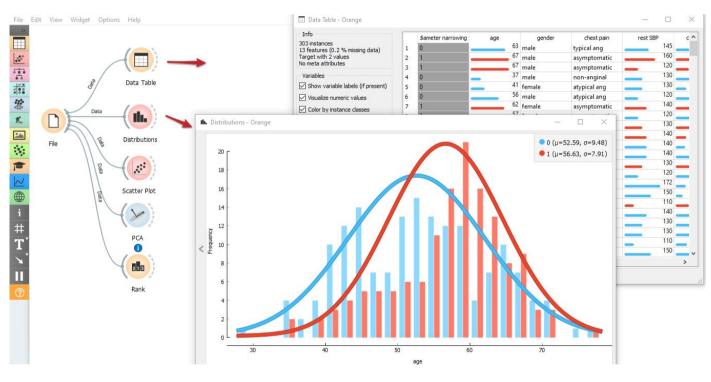
16 – 20 May 2022, Serbia

🗋 File - Orange — 🗆	X D File - Orange - D X
Source Image: Source I	Source Source Source File: BankChurners.csv SReload URL:
Info 10127 instance(s) 21 feature(s) (no missing values) Data has no target variable. 0 meta attribute(s)	Info 10 127 instance(s) 21 feature(s) (no missing values) Data has no target variable. 0 meta attribute(s)
Columns (Double click to edit)	Columns (Double click to edit)
Name Type Role Values 3 Customer_Age 10 numeric feature	Name Type Role Values ^ 3 Customer_Age Immeric Feature ^
4 Gender G categorical feature V F, M	4 Gender C categorical feature F, M
5 Dependent_count 10 numeric feature target	5 Dependent_count 🔃 text datetime feature
6 Education_Level Categorical skip College, Doctorate, Graduate, High School, Post-Graduate, Uneducated, Unknown	6 Education_Level C categorical feature College, Doctorate, Graduate, High School, Post-Graduate, Uneducated, Unknown
7 Marital_Status Categorical feature Divorced, Married, Single, Unknown	7 Marital_Status Categorical feature Divorced, Married, Single, Unknown
8 Income_Category C categorical feature S40K - S60K, S60K - S80K, S80K - S120K, S120K +, Less than S40K, Unknown	8 Income_Category C categorical feature \$40K - \$60K, \$60K - \$80K, \$80K - \$120K, \$120K +, Less than \$40K, Unknown
9 Card_Category Categorical feature Blue, Gold, Platinum, Silver	9 Card_Category C categorical feature Blue, Gold, Platinum, Silver
10 · · · · · · · · · · · · · · · · · · ·	v 10
Reset Apply	Reset Apply
Browse documentation datasets	Prowse documentation datasets
? 🖹 🗗 10.1k	

The data contents can be seen through the Data Table widget. For that purpose, we are connecting both widgets.


To see the contents of the Data Table, double-click it:

Data Table - Orange								. 🗆	×	The	data	15
Info			Attrition_Flag	CLIENTNUM	Customer_Age	Gender	Dependent_count	Education_	ev ^	presen	ted in	table
10127 instances (no missing data) 20 features		1	Existing Cust	768805383	45	M	3	High Schoo		format		with
larget with 2 values to meta attributes		2	Existing Cust	818770008	49	F	5	Graduate		Tormat		witt
		3	Existing Cust	713982108	51	M	3	Graduate		inform	ation o	n the
Variables		4	Existing Cust	769911858	40	F	4	High Schoo		nanel'	s left	side
Show variable labels (if present)		5	Existing Cust	709106358	40	M	3	Uneducated		· ·		
Visualize numeric values		6	Existing Cust	713061558	44	M	2	Graduate		includ	ing	th
Color by instance classes	-	7	Existing Cust	810347208	51	M	4	Unknown	-	percen	t of mi	ssin
Selection		8	Existing Cust	818906208	32	M	0	High Schoo		· · .		. '
Select full rows		9	Existing Cust	710930508	37	M	3	Uneducated		values	and	dat
>		10	Existing Cust	719661558	48	м	2	Graduate		types.		
	~	11	Existing Cust	708790833	42	м	5	Uneducated		if pess		
		12	Existing Cust	710821833	65	M	1	Unknown		A1		1-
		13	Existing Cust	710599683	56	M	1	College		AISO, V	we can	COIO
		14	Existing Cust	816082233	35	м	3	Graduate	_	the	data	b
		15	Existing Cust	712396908	57	F	2	Graduate	- 1	instand	ce class	- 0.0
		16	Existing Cust	714885258	44	м	4	Unknown	- 1	mstant	LC CIASS	ica.
		17	Existing Cust	709967358	48	M	4	Post-Gradua	te			
		18	Existing Cust	753327333	41	м	3	Unknown	_	The t	arget	1S 11
		19	Existing Cust	806160108	61	м	1	High Schoo		dark g	rey, an	d th
Restore Original Order		20	Existing Cust	709327383	45	F	2	Graduate	~	-	-	
Send Automatically		<							>	meta-a	ttribute	e 18 11
2 🖹 🕂 10.1k 🕞 10.1k 10.										a light	er tone	


BUILDING WORKFLOWS

Analytical workflows are executed from left to right by placing and connecting widgets on the canvas. In Orange, data does not flow backward.

BASIC DATA EXPLORATION

Repeat after the trainer or simultaneously the following steps of basic data exploration over the prebuild "heart_desease" dataset:

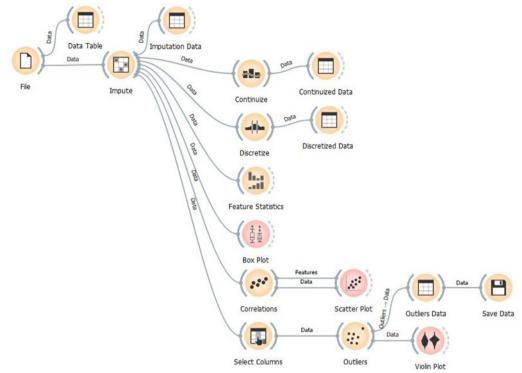
- Load the data (widget File)
- Present the data into tabular format (connect to the widget: Data Table)
- Color the values and organize in descending order the first non-target attribute in Data Table
- Explore data related to the target class through widget Data Distribution
- Provide a 2-dimensional scatter plot visualization and find informative projections (widget Scatter Plot)

- Provide a PCA linear transformation of input data (widget PCA)
- Score variables according to their correlation with discrete or numeric target variables (widget

Rank)

Here are some of the widget pane settings suitable for the pointed task.

Listributions - Orange	🧟 Scatter Plot - Orange	➢ PCA - Orange	💼 Rank - Orange
Variable	Axes Axis x: 🚺 major vessels colored 🗸	Components Selection	Scoring Methods
Filter	Axis y: 🚺 cholesterol 🗸	Components: 9 🜩	Information Gain
C diameter narrowing	Find Informative Projections	Explained variance: 73%	Information Gain Ratio
🔃 age	Attributes	Options	Gini Decrease
C gender	Color: 🚺 dameter narrowing 🗸	Normalize variables	ANOVA
C chest pain	Shape: (Same shape) ~	Show only first 20	□ X ²
Sort categories by frequency	Size: (Same size) V		ReliefF
Distribution	Label: (No labels) V		FCBF
Fitted distribution Normal V	Label only selection and subset		
Bin width 2	Symbol size:		
Smoothing 10	Opacity:		
Hide bars	Jittering:		
	Jitter numeric values		
Columns	Show color regions		Select Attributes
Split by C diameter narrowing V	Show legend Show gridlines		O None
Stack columns	Show all data on mouse hover		
Show probabilities	Show regression line		O Manual
Show cumulative distribution	Zoom/Select		Best ranked: 9
Apply Automatically			
Mbbis Horousactary	Send Automatically	Apply Automatically	Send Automatically
? 🖺 🗎 🕂 303 🕞 - 303 50	Ŷ ED ED @ -D - [→ - 303 2	? 🖺 🗎 -∋ 303 [→ 303	2 🗎 → 303 - [→ 303


FEATURE STATISTICS AND DATA PREPARATION

Follow the instructions in the **demonstration**. It shows several steps through applying appropriate widgets to prepare the data for analysis and ensure data quality.

For this purpose, a prebuilt **dataset called "heart_desease"** is used. It has a subset of 12 attributes from the Cleveland database. The "goal" field refers to the presence of heart disease in the patient. It is integer-valued from 0 (no presence) to 1 (presence). The associated attributes are age, gender, four types of chest pain (typical Angina, atypical Angina, non-Anginal pain, Asymptomatic), values of measurement: serum cholesterol, resting systolic blood pressure, maximum heart rate. Also, is the fasting blood sugar higher than 120 or not; are the resting electrocardiogram results normal, have left ventricular hypertrophy, or have an ST-T wave abnormality; is thalassemia described as a fixed defect (no blood flow in some parts of the heart), normal blood flow, or reversible defect (blood flow is observed but it is not normal). The slope of the peak exercise ST segment is presented in the data as upsloping, down, and downsloping. Also, the number of major vessels colored is counted from 0 to 3, and the presence or absence of exercise-induced Angina.

• Load the data.

• Present the data in a tabular format (Table widget).

The question mark signals a missing value. We guess that such values are less than 0.1% of all the data. Otherwise, the information about that would be given in the File widget. Such a percent is not significant and would not provide a bias. But we have enough available values for all features to deal with the missing data.

• Impute the missing values (Impute widget) and apply the "Average or Most-frequent" method. In the top-most box, "Default method", the user can specify a general imputation technique for all attributes. It is possible to specify individual treatment for each attribute, which overrides the default treatment set. The imputation methods for individual attributes are the same as the default methods. As almost all features have a few missing data of a different type (numerical and categorical), apply the Average or Most-frequent method. It uses the average value (for continuous attributes) or the most common value (for discrete attributes).

• Check for missing values connecting the imputation output to the Table widget.

Transform categorical attributes into numeric (Continuize widget)

It receives a data set in the input and outputs the same data set in which the discrete variables (including binary variables) are replaced with continuous ones.

• Apply "Treat as ordinal" and check the result with the Table widget. It converts the variable into a single numeric variable enumerating the original values.

 \circ Normalize the numeric values (to the interval [0,1]) and check the output.

• Discretize the numeric data features (try Entropy-MDL, Equal-frequency, and Equal-width methods).

• Get helpful statistical information for features (Feature Statistics) and make conclusions.

• Visualize the imputed data with the box plot and make conclusions.

• Find the pairwise attribute correlations (Correlations widget). The widget computes Pearson or Spearman correlation scores for all pairs of features in a dataset. These methods can only detect monotonic relationships.

- $\circ~$ Visualize the most correlated pair of attributes with the scatter plot.
- Remove outliers from the age column (Outliers widget), save and visualize the data.

Repeat appropriate steps over the other prebuild dataset to prepare it for analysis.

PREPROCESSING IN ONE WIDGET

H

1. Load the prebuilt data: heart_disease dataset

		Heart_disease data	- Orange		—	\times						
	Sou	urce										
	File: heart_disease.tab											
	O URL:											
eart_disease data	Hea	Info Heart Disease dataset Data on the presence of heart disease in patients.										
	13 fe Class	instance(s) eature(s) (0.2% miss sification; categorical ta attribute(s)		(no missing values)								
	Col	umns (Double click to	edit)									
		Name	Туре	Role	Values	^						
	1	age	Ν numeric	feature								
	2	gender	C categorical	feature	female, male							
Training Data	3	chest pain	C categorical	feature	asymptomatic, atypical ang, non-anginal, typical ang							
	4	rest SBP	N numeric	feature								
	5	cholesterol	N numeric	feature								
Predict Data	6	fasting blood sugar > 120	C categorical	feature	0, 1	v						
		Reset			Apply							
			E	rowse documentat	ion datasets							
	2	🖹 🛛 🗗 303										

2. Connect to the Data Table widget.

The file and table widgets show missing values that we have to deal with. Only 12 attributes describe the data; therefore, additional inspection for dimensionality reduction is not needed so far.

3. Connect to the Distribution and Feature Statistics widgets.

The target binary data are relatively balanced, with 54% instances in class null and 46% in class 1.

Big Data Academic Class & Workshop

16 – 20 May 2022, Serbia

C	Name exerc ind ang	Distribution	Mean	Median U	Dispersion 0.632	MA
C	slope peak exc ST			upsloping	0.897	
C	thal			normal	0.864	
C	diameter narrowing			0	0.69	
N	age	uli.	54.44	56	0.17	
N	rest SBP		131.69	130	0.13	
N	cholesterol		246.69	241	0.21	~

- 4. Connect to Preprocess widget
- 4.1. Apply the "Impute Missing Values" method
- 4.2. Apply the "Continuize Discrete Variables" method

Preprocess - Orange	- 🗆 X
Preprocessors	Impute Missing Values X Average/Most frequent Replace with random value Remove rows with missing values. Continuize Discrete Variables Most frequent is base One feature per value Remove non-binary features Remove categorical features Treat as ordinal Divide by number of values
	Normalize Features X Standardize to $\mu=0$, $\sigma^2=1$ Center to $\mu=0$ Scale to $\sigma^2=1$

Try "Treat as ordinal" and "One feature per value" and check the outputs in data tables. What is the difference?

Pay attention to the one-hot encoding technique (Orange equivalent is "One feature per value"). It means each value in the feature gets a new column with value 0 (the instance does not have this feature value) or 1 (the instance has this feature value) for each instance. In those cases categorical features will be labeled with the format feature-name=feature-value = 0/1 - e.g. chest pain=asymptomatic = 1. It means that the feature chest pain has value asymptomatic. Model, in this case, made more columns (attributes) – from 13 to 25.

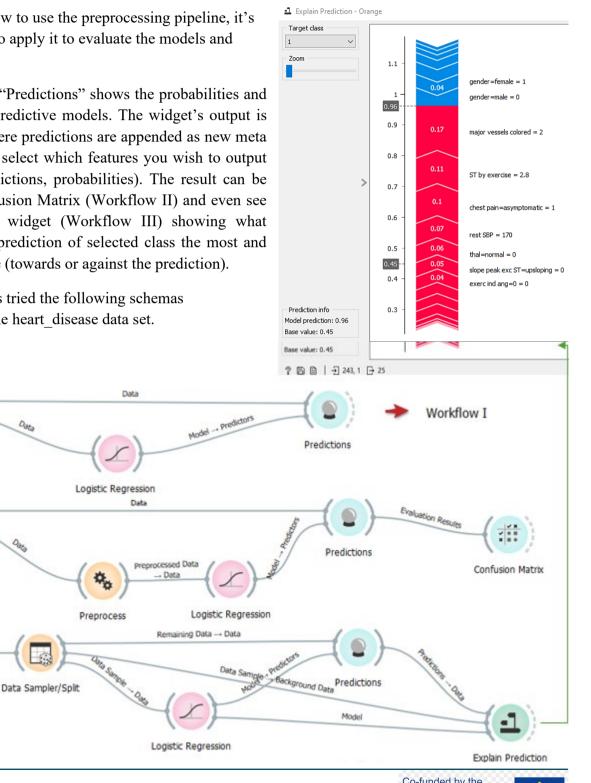
4.3. Apply the "Normalize Features" method

4.4. Apply "PCA", Rank and "CUR Matrix Decomposition" methods) to inspect the Dimensionality reduction approach. Then disconnect methods from the widget window.

We can manually point the desired number of attributes for the PCA, Rank, or CUR Decomposition. The usage of these methods is illustrative as we needn't such a dimensionality reduction.

PREDICTION

Heart_disease data


Heart_disease data

Heart disease data

Knowing how to use the preprocessing pipeline, it's time to know how to apply it to evaluate the models and predict.

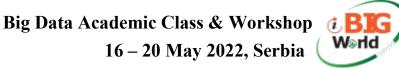
The widget "Predictions" shows the probabilities and final decisions of predictive models. The widget's output is another dataset, where predictions are appended as new meta attributes. You can select which features you wish to output (original data, predictions, probabilities). The result can be observed in a Confusion Matrix (Workflow II) and even see Explain Prediction widget (Workflow III) showing what features affect the prediction of selected class the most and how they contribute (towards or against the prediction).

The students tried the following schemas (workflows) with the heart disease data set.

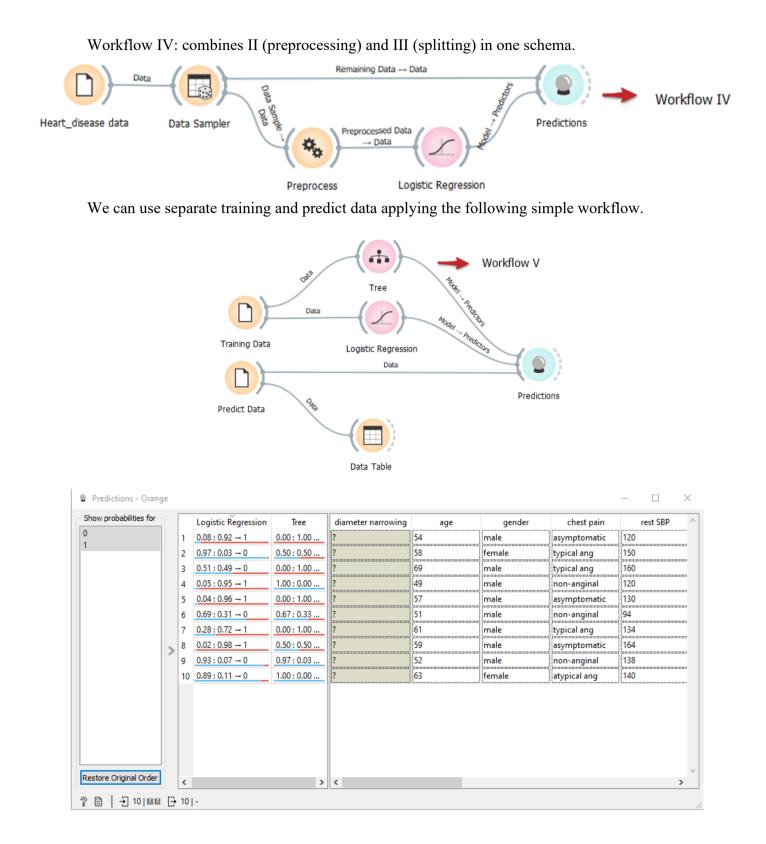
The workflow I: using the learner's default preprocessing. Logistic Regression uses default preprocessing when no other preprocessors are given. It executes them in the following order:

- removes instances with unknown target values
- continuizes categorical variables (with one-hot-encoding)
- removes empty columns
- imputes missing values with mean values

Most learners come with prebuild by default preprocessing. Others like Constant or Decision Tree haven't got. So, you have to check that in the documentation or point the learner in the canvas + F1.

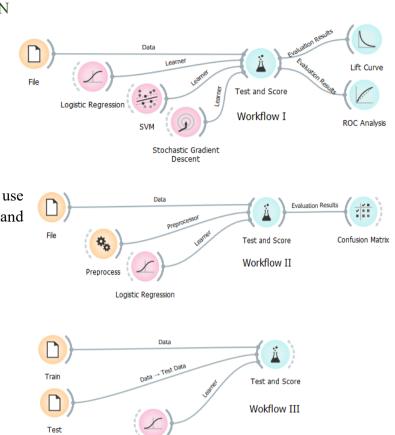

Workflow II: remove default preprocessing by connecting a Preprocess widget to the learner. Confusion Matrix can be used to inspect more detail the outputs.

🗱 Confusion Matrix - Orange								- 🗆	\times	
Learners Logistic Regression							Show:	Number of instan	ces 🗸	
cogistic negression				Pr	edicted					
				0	1	Σ				
		_	0	150	14	164				
	>	Actual	1	27	112	139				
	1		Σ	177	126	303				
Predictions Probabilities										
Apply Automatically		Select (Correct		Select N	Misclassified		Clear Selection		
2 🖹 → 1×303 → 41130	3									


Workflow III demonstrates the Data Sampler widget properties to split the data into training and testing sets. Additionally, Explain Prediction widget shows what features affect the prediction of the selected

ost		Show probabilities for		Logistic Regression	iameter narrowin	age	gender	chest pain	^
	Sampling Type	0	1	0.40 : 0.60 → 1	1	52	male	asymptomatic	1
	Fixed proportion of data:	1	2	0.97 : 0.03 → 0	0	67	female	non-anginal	8
	80 %		3	0.04 : 0.96 → 1	1	58	female	asymptomatic	
	1.		4	0.69:0.31 → 0	0	64	female	asymptomatic	
	Fixed sample size		5	0.08:0.92 - 1	1	77	male	asymptomatic	
	Instances: 1		6	0.95:0.05 → 0	0	59	male	non-anginal	
	- Lood		7	0.52:0.48 → 0	0	46	female	asymptomatic	
	Sample with replacement		8	0.97:0.03 → 0	1	47	male	non-anginal	
	O Cross validation		9	0.97:0.03 → 0	0	50	male	non-anginal	
	Number of subsets: 10				0	41	female	non-anginal	
				0.75:0.25 → 0	0	67	female	asymptomatic	
	Unused subset: 1		0	0.86:0.14 → 0	0	37	male	non-anginal	
	O Bootstrap		0	0.82:0.18 → 0	0	54	male	atypical ang	
	Othert			0.95:0.05 → 0	0	44	male	atypical ang	66
	Options			0.00 : 1.00 → 1	1	67	male	asymptomatic	
	Replicable (deterministic) sampling		16	0.90:0.10 - 0	0	53	male	non-anginal	~
	Stratify sample (when possible)								
	Stratify sample (when possible) Sample Data	Restore Original Order	< Log	Model AUC gistic Regression 0.914	CA F1 P	recision Recall 901 0.900		>	

how they contribute (towards or against the prediction).



a.

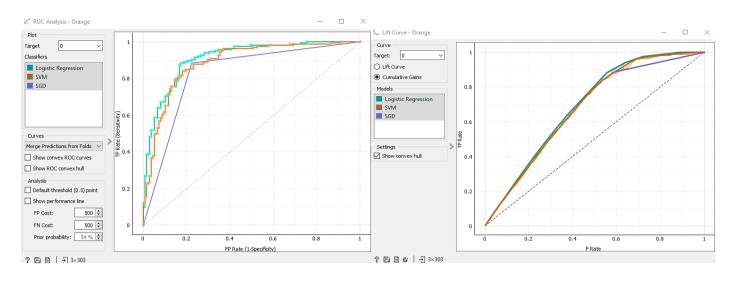
MODEL TESTING AND EVALUATION

The following schema shows the typical test and score workflow.

Some

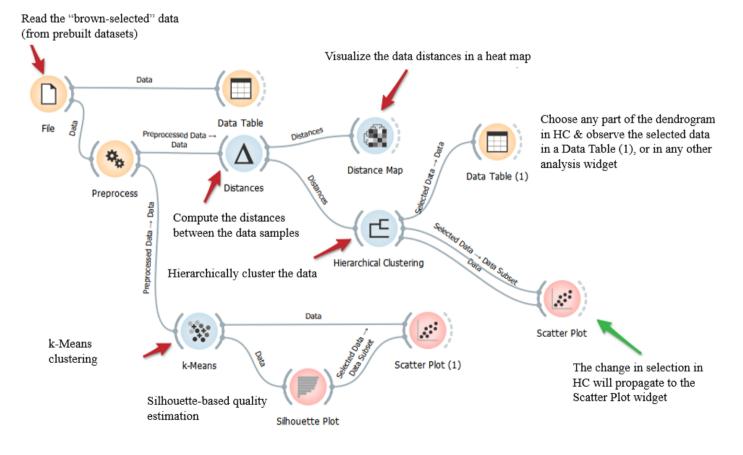
preprocessing (II) and separate training and testing sets (III).

versions


extended

The results can be visualized using Logistic Regression various widgets. The confusion matrix and scatter plot, ROC Analysis, and Lift Curve are the most informative.

Sampling	Evaluation Results								
Cross validation	Model	AUC	ČĂ	F1	Precision	Recall			_
Number of folds: 5 \checkmark	Logistic Regression	0.910	0.848	0.848	0.849	0.848			
✓ Stratified	SGD	0.831	0.835	0.834	0.836	0.835			
Cross validation by feature	SVM	0.888	0.825	0.825	0.825	0.825			
×									
Random sampling									
Repeat train/test: 10 V									
Training set size: 66 %									
Stratified									
) Leave one out	Model Comparison by A	AUC							
) Test on train data		Log	istic Re	gressio	n	SGD	S	VM	
) Test on test data	Logistic Regression					0.986	0.	.967	
Target Class	SGD		0.01	4			0	.017	
			0.03	2		0.983			
-	SVM					0.000			
(Average over classes)	SVM								
-	SVM								
(Average over classes)	SVM								



CLUSTERING

The brown selected data set comprises 186 rows (genes) and 81 columns. Out of the 81 columns, 79 contain gene expressions of baker's yeast under various conditions, one column (marked as a "meta attribute") provides gene names, and one column contains the "class" value or gene function.

Follow the schema.

TABLEAU

Objectives:

- Installing the software Tableau Public
- Data workspace and loading data
- Using limited preprocessing functionality
- Visualization and analysis workspaces
- First visual analysis
- Exploring different visualization techniques

INSTALLATION & FAMILIARIZATION OF TABLEAU

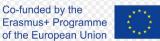
INSTALLATION STEPS

The free version of the software (Tableau Public) is utilized in lab sessions.

Step 1: Visit the Tableau Public Website

Step 2: Enter your e-mail address to download it.

Step 3: Run the downloaded installer.


LOADING DATA AND PANES

Students followed all the described below steps.

The first screen is called Connect pane. Notably, the exceptional variety of data sources by structure and the ability to connect with various repositories such as IBM, Microsoft, Teradata, Spark is available.

		Connect Pane									
Го а File	Search										
Microsoft Excel	Actian Matrix	Exasol	MapR Hadoop Hive								
Text file	Actian Vector	Firebird	MariaDB								
JSON file	Amazon Athena	Google Ads	Marketo								
Microsoft Access	Amazon Aurora	Google Analytics	MarkLogic								
PDF file	Amazon EMR Hadoop Hive	Google BigQuery	MemSQL								
Spatial file	Amazon Redshift	Google Cloud SQL	Microsoft Analysis Services								
Statistical file	Anaplan	Google Drive	Microsoft PowerPivot								
	Apache Drill	Google Sheets	Microsoft SQL Server								
To a Server	Aster Database	Hortonworks Hadoop Hive	MonetDB								
Microsoft SQL Server	Azure SQL Data Warehouse	IBM BigInsights	MongoDB BI Connector								
MySQL	Box	IBM DB2	MySQL								
Oracle	Cloudera Hadoop	IBM PDA (Netezza)	OData								
Amazon Redshift	Databricks	Intuit QuickBooks Online	OneDrive								
More	Denodo	Intuit QuickBooks Online (9.3-2018.1)	Oracle								
	Dropbox	Kognitio	Oracle Eloqua								

1. Download the Superstore data from the following <u>link</u>. It opens a web storage of various sample data.

- 2. Load the data to Tableau by using the Excell option in the Connect pane.
- 3. Look at the data in the next pane called Data Source.

$\begin{array}{c c} & \leftarrow \rightarrow & \hline & \leftarrow \\ \hline & \hline & \hline & \hline \\ \hline & \hline & \hline \\ \hline \\$	8- Global Superstore Orders 2016	Data Source Pane	Filters 0 Add
Global Superse Orders 2016 Excel Sheets Use Data Interpreter Data Interpreter might be able to clean your Excel workbook.	Orders	Drag sheets here	
I Orders			
People New Union	III Sort fields Data source order 💌	Show aliases Show hidden fields	* rows

4. Drag the order table to the canvas

The primary set used for this training contains a list of worldwide company transactions described with 24 attributes: Row ID, Order Priority, Discount, Unit Price, Shipping Cost, Customer ID, Customer Name. Ship Mode, Customer Segment, Product Category, Product Subcategory, Product Container, Product Name, Product Base Margin, Country, Region, State or Province, City, Postal Code, Order Date, Ship Date, Profit, Quantity ordered new, Sales, Order ID.

PREPROCESSING FUNCTIONALITY

- 5. Extract more information from the same data source. Drag the other table onto the workspace.
- 6. Integrate the data by adding a connection to the other source. A text file of returned orders is saved in a CSV format.
- 7. Edit the join in the appropriate icon.

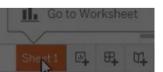
We choose a left join, so we get all the information from the orders table and only relevant returns information. It's already based on order id as the join clause, but we could change this if desired.

	Join			×				
	Inner La	D _{ft} &	Right	Full Outer				
	Data Source		Global Superstore	Returns				
	Order ID	=	Order ID (Global Su	neret				
		1.2	0102110 (0000100	Jerse				
🗉 🗐 Sor	Add new jain dause					Show aliases	Show hidden fields	1,000 +
	Add new join dause							· · · · ·
lbc	Add new join dause	A	00		Abc	ë		Abc
bc liobal Superstore	Add new join dause	Al 15 201 Gi						Abc Orders
■ III Sor Noc Returned <i>null</i>	Add new join dause	Al 15 201 Gi	ic obal Superstore Returns 20	.ii II)1 Orders	Abc Orders Order ID	Corders	📛 Orders	Abc

In the integrated table, the join parts are coded in color. The order return data is in the orange line, and the information on all transactions is marked with a blue line. In this grid view, we can do some essential metadata management.

8. Split the order ID field. It has multiple parts, such as the code of distribution center, the year and two additional codes. Use custom split and a split on a hyphen. Rename the field to a distribution center.

1	Custom Split		×	1	
ourc	How should this dat	a be split?		Show aliases	Show hidden
rstore (Glt	Use the separator Split off	- First 🔻	1 🖨 columns	Abc 💌	Corders
num		0	K Cancel	CA-2014-AB10015140-41954	11/11/2014


9. Connect to Live and click on the sheet tab down at the bottom.

	⊖ · Orders+ (Multiple Connections)	Connection Live Extract	Filters 0 Add
dd		R	
	Orders Giobal Superstore Returns 2		

Another option in the Data Source Pane is the kind of connection to the data we desire: live or extract the data. Connecting live is excellent when we have constantly changed data or want to leverage the high-performance database we are connected to. Alternatively, we may choose to import data into Tableau's fast engine with an extract that takes the data offline and minimizes performance impact while still allowing regularly scheduled refreshes to keep the data up to date.

Dimensions and Measures are Tableau's way of distinguishing Categorical and Numerical features from the dataset.

First go to the worksheet

- Dimensions are categorical features responsible for a graph's different dimensions or axes.
- Measures are the continuous values representing a datapoint plotted along an axis.

Big Data Academic Class & Workshop

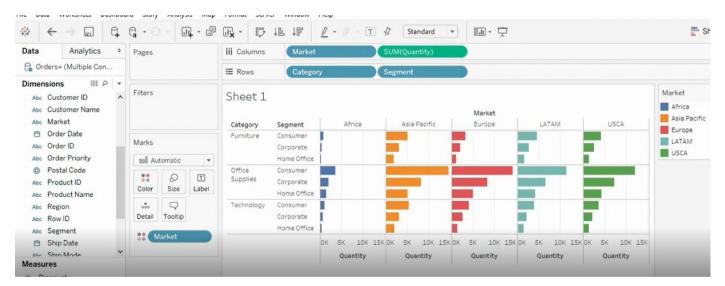

16 – 20 May 2022, Serbia

	Tableau Public - Book1	
★ ← → □ C ■ • @ ∞ • ♡ ↓	s IF ℓ·∂·I ☆ Standard - Hair 中	📑 Show Me
Data Analytics + Pages	III Columns	
	= Rows	
Category Filters	Sheet 1 atures In The Dataset	
States/UTs/Cities Abi: Measure Names Marks	Drop field here	
Measures # Burglary - Incidence (I) T Automatic *		
Burglary - Volume (V) Burglary - Volume (V) Color Sze Text Cheating - Volume (V)		
Counterfeiting - Incider Detail Toolfip Counterfeiting - Volum Criminal Breach of Trus		
# Criminal Breach of Trus # Culpable Homicide Not # Culpable Homicide Not		Select or drag data
Decoity - Incidence (I) Decoity - Volume (V) Kidnapping & AbductioNumerical/Continuo	us Features In The Dataset	Use the Shift or Cmd key to select multiple fields
Kidnapping & Abductio Murder - Incidence (I) Murder - Volume (V)	Drop field Drop field here here	
Other IPC Orimes - Incl Other IPC Orimes - Volu Rape - Incidence (I)		
Rape - Volume (V) Riots - Incidence (I)		
Riots - Volume (V) Robbery - Incidence (I) Robbery - Volume (V)		
# Theft - Incidence (I) # Theft - Volume (V) # Total Cognizable Crime		
Total Cognizable Crime Total Cognizable Crime Latitude (generated) Languide (generated)		
-# Number of Records		

10. Bring category to rows, segment to rows, quantity to columns, market to columns. Bring market to color.

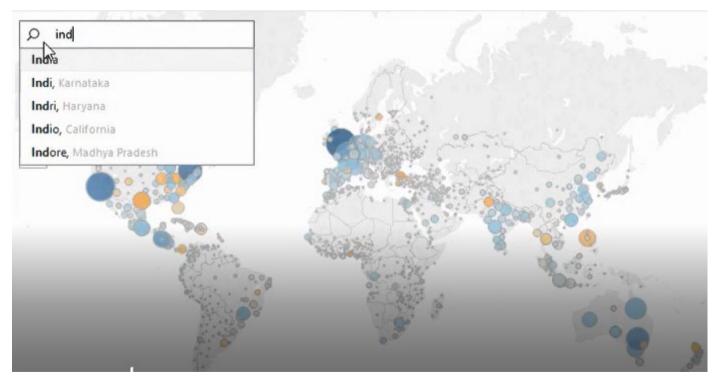
VISUAL ANALYSIS & TECHNIQUES

It's that easy to visualize how the sales look per category, customer segment and market. We can quickly see that Africa is an emerging market.

The left pane is broken up into dimensions and measures that represent the column headers in the excel sheet

In this case, the dimensions are categorical fields such as date, customer and category. They are often discrete fields and create labels in the chart also are colored in blue. The measures, on the other hand, are our metrics. They are the numbers we want to analyze. Measures are often continuous fields that create axes in the chart and are colored green.

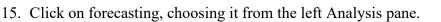
11. Compare what quarterly growth looks like over the years



12. Present as a cross-table the following visualization of Sales Seasonality.

13. Export the table in an Excel spreadsheet.

14. Activate the map window from Show Me Pane and load the data on profit and location where the sale took place in the canvas. Indicate the area to which the settlement belongs. Use the size shadow and color settings to present the data more understandably. Different colors should be according to the sales profit.


The map is interactive, and we can choose the desired area or location.

FORECASTING

Big Data Academic Class & Workshop *i* 16 – 20 May 2022, Serbia (^M

It is effortless to make a forecast in Tableau, although there are some limitations, one of which is at least five data points, and if the data is seasonal, at least two seasons' worth of data is needed. From the analysis panel, we select forecast. The view has both the forecast and prediction intervals. The last ones are presented as a shaded band. If we change the mark type to a circle the prediction interval becomes whiskers around the point.

The model selection is automatic, but there are some things we, as the user, can adjust. If we want to customize the default forecast, right-click in the view, select forecast, forecast options.

CLUSTERING

The cluster analysis demonstration uses the familiar set of data about the flower iris and its varieties based on the length and width of the sepals and petals.

- 16. Load the data.
- 17. Select Clustering from the Analysis Pane.

Big Data Academic Class & Workshop

16 – 20 May 2022, Serbia

Tableauusesonlythek-meansmethodforclustering.Wecancontrolthe number of clustersandvariablestocalculatetheclusterbut notthealgorithmitself.

WORKSHOP

The session started with team building. The twelve students from ULSIT (Bulgaria), UNi (Serbia), and UBB (Poland) participating in the classes form four teams by blending trainees from the consortium's countries. Each team had to perform its own data-driven project appling Orange, or/and Tableau. The results have to be reported by making an appropriate presentation.

The compulsory components are:

- Objective
- Data
- Methodology

- Experiment set-up
- Results
- Conclusion

The typical workflow for the project may vary, but the following steps have to be considered:

- Data collection
- Data understanding (EDA)
- Data preparation:
- o data cleaning (missing data, duplicated data, irrelevant data, outliers)
- o data transformation (wrangling and feature engineering)
- Model building
- Evaluation
- Communicate Results

Trainers with trainees choose the topics for the projects taking into account the academic background.

The workshop passed through two stages. The first (team building, topic and objective identification, data detection, and brainstorming) occurred in the formal setting of the university hall. Thus, the second stage has been organized at the coffee house vanue of the Nis amphiteathre.

MEMBERS

Djordje Antic (UNi)

- Kacper Palka (UBB)
- Damian Grygierczyk (UBB)

TEAM NAME:

"Team 1"

TOPIC

Business Case: Bank Churners

OBJECTIVE

- Predict bank customer churn
- Comparison of the Python implementation and the Orange widget capabilities

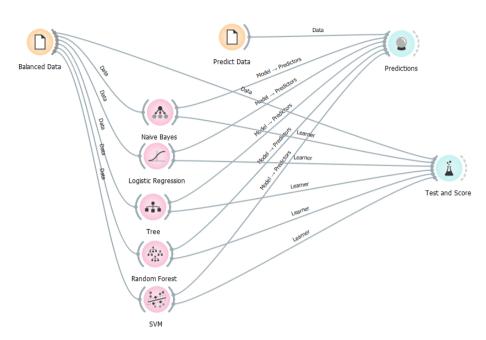
TOOL(S)

- Python
- Orange

METHODS

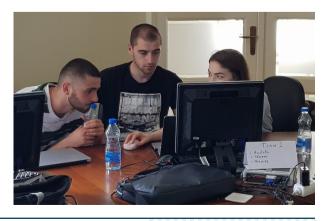
Machine Learning

Algorithms: Decision Tree, Random Forest, Support Vector Machines (SVM), Logistic Regression, and Naïve Bayes.


DATA

The set consists of 10,000 customers' metadata such as age, salary, marital status, credit card limit, credit card category described in 21 features. The target variable is attrition flag: account is closed 1, else 0.

WORKFLOW


RESULTS

Sampling	Evaluation Results					
Cross validation	Model	AŬC CA	F1	Precision	Recall	Dealing with categorical columns Encoding categorical data with d
Number of folds: 5 ~	Random Forest	0.970 0.945	0.943	0.944	0.945	with categorical cat
Stratified	Naive Bayes	0.911 0.886	0.886	0.886	0.886	Encoding categorical data with discrete values data = data - replace(finance)
O Cross validation by feature	Tree	0.794 0.926	0.923	0.923	0.926	
×	SVM	0.783 0.774	0.792	0.821	0.774	total rening Customer
O Random sampling	Logistic Regression	0.547 0.839	0.766	0.705	0.839	Marka James Annual Samuel Samue Samuel Samuel Samue
Repeat train/test: 10 V						A data and a data
Training set size: 66 % 🗸						Antial Security (Security (Security)) and (Security) (Security (Security)) and
Stratified						Concernant, Love Antonio Conc. Love P. Read in
O Leave one out	Model Comparison by A	AUC				data a pd pet_dumaies(data_ onlumeus) Marital_Status'(dog.first = free)
○ Test on train data		Random F.	Naiv	e Bayes	Tree	
O Test on test data	Random Forest		1.	.000	1.000	
Target Class	Naive Bayes	0.000			0.999	Mig/Wate 2029-1-PL01-KX203-002107
(Average over classes) ~	Tree	0.000	0	.001		Links and
Model Comparison				07-048		
Area under ROC curve 🗸 🗸	SVM	0.001	0.	.002	0.396	
Negligible difference: 0.1	Logistic Regression	0.000	0.	.000	0.000	

TEAM 2

MEMBERS

- Mateusz Damek (UBB) on the left side
- Slaven Panov (ULSIT) in the middle
- Andjela Kostic (UNi) on the right side

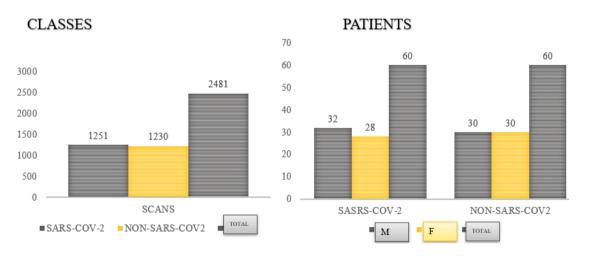
TEAM NAME:

"Investigators"

TOPIC

Medical Case:

Classification of COVID-19 and non-COVID-19 from computed tomography imagies


OBJECTIVE

Big Data workflow development for COVID-19 CT scan binary classification: COVID-19 pneumonia or non-COVID 19.

DATA

Open data from Public Hospital of the Government Employees, Metropolitan Hospital of Lapa, Sao Paulo, Brazil

Available at: Kaggle and GitHub

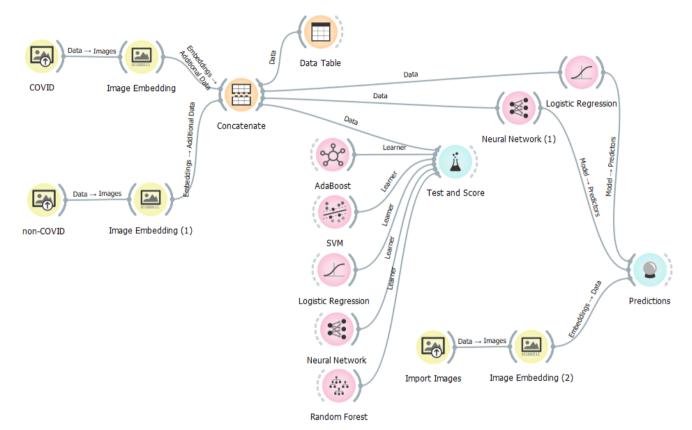
REFERENCE

Soares E, Angelov P, Biaso S, Froes MH, Abe DK. Sars-cov-2 ct-scan dataset: a large dataset of real patients ct scans for sars-cov-2 identification. medRxiv; 2020.

TOOLS

Orange extended by Image Analytics add-on.

METHODS

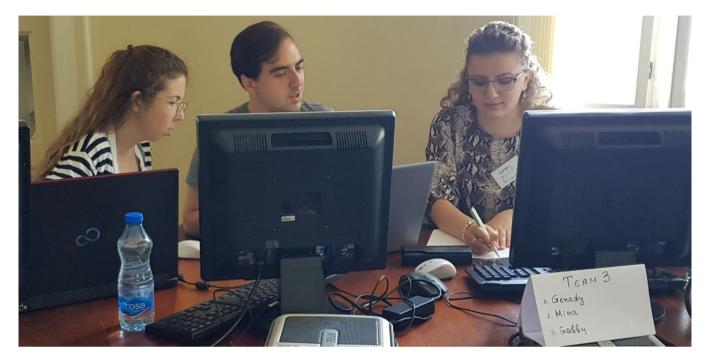

Transfer Learning with Inception v3 using image embedding widget for features extraction and applying the following algorithms: a multi-layer perception (MLP) algorithm with backpropagation and

logistic regression. The last two are used as the best approaches after comparing the results of MLP, Logistic Regression, Ada Boost, Random Forest and SVM.

WORKFLOW

RESULTS

Sampling	Evaluation Results					
Cross validation	Model	AUC	ČĂ	F1 F	Precision	Recall
Number of folds: 5 $$ $$ $$	Neural Network	0.989	0.950	0.950	0.950	0.950
Stratified	Logistic Regression	0.981	0.924	0.924	0.924	0.924
O Cross validation by feature	SVM	0.884	0.811	0.811	0.811	0.811
~	Random Forest	0.858	0.779	0.779	0.781	0.779
Random sampling	AdaBoost	0.728	0.728	0.728	0.728	0.728
Repeat train/test: 10 $$ $$ $$						
Training set size: 66 % 🗸 🗸						
Stratified						
) Leave one out	Model Comparison by	AUC				
Test on train data		S	VM	Rand	lom F	Neural Ne.
 Test on test data 	SVM			0.	.893	0.005
Target Class	Random Forest	0.	.107			0.000
(Average over classes) 🛛 🗸	Neural Network	0	.995	1	.000	
Model Comparison						
Area under ROC curve \sim	Logistic Regression	0.	.994	1.	.000	0.000
Negligible difference: 0.1	AdaBoost	0.	.001	0.	.000	0.000



TEAM 3

MEMBERS

Mina Krstic (UNi),

Genadiy Gospodinov (ULSIT), Gabriela Naydenova (ULSIT)

TEAM NAME

"MGG"

TOPIC

Business Case: Interactive Data-Driven Dashboard for Business Data Analysis (Business Intelligence)

OBJECTIVE

Creating an interactive dashboard and storyline for: analysis of quantity of sales, profit of sales, and shipping costs per product category and subcategory for the four USA regions where the company operates (East, West, South, and North). Creating an interactive dashboard and storyline for: analysis of quantity of sales, profit of sales, and shipping costs per product category and subcategory for the four USA regions where the company operates (East, West, South, and North).

DATA

Tableau Superstore dataset with 10 000 sales transactions organized in 20 features for the period 2014 - 2018.

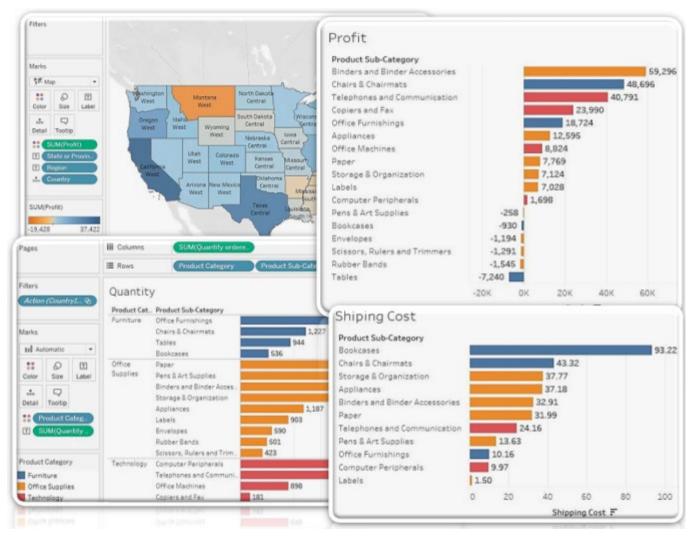

TOOLS

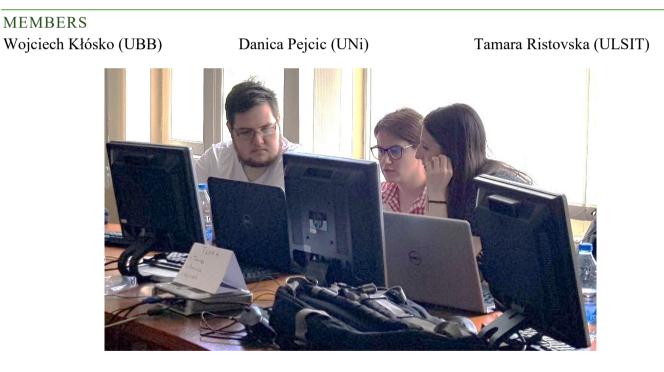
Tableau Public

METHODS

Summary statistics and visualization techniques for exploratory data analysis (EDA).



EXAMPLE PLOTS AND DASHBOARDS



RESULTS: STORYLINE

TEAM 4

TOPIC

Administrative case: Human Development Index

OBJECTIVE

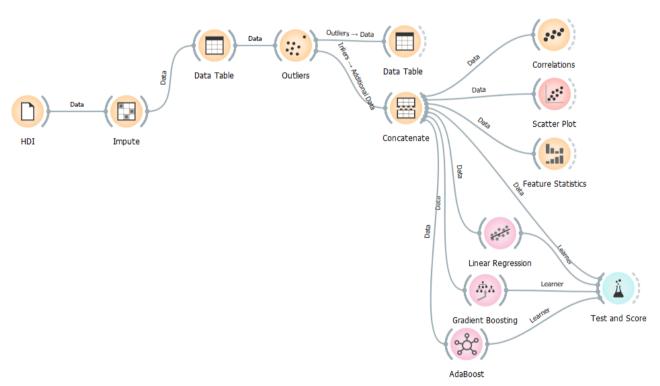
Regression task: Predict HDI (Human Development Index)

Cluster analysis: Grouping by HDI

DATA

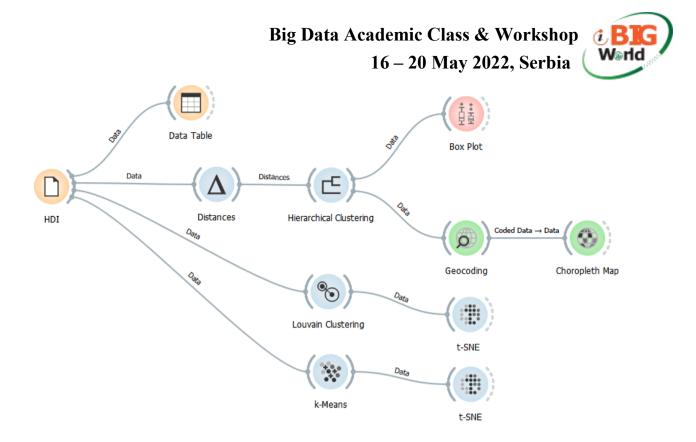
Data were taken from UNITED NATIONS DEVELOPMENT PROGRAMME, Human Development Reports, <u>Data Center</u>. An adapted version is available as prebuild dataset named HDI. It contains information on more than 180 countries, which are described with more then 60 features. Indeed, the Human Development Index (HDI) is a summary measure of average achievement in key dimensions of human development: a long and healthy life, being knowledgeable and having a decent standard of living. The HDI is the geometric mean of normalized indices for each of the three dimensions.

TOOLS


Orange

METHODS

Regression analysis through Linear Regression, AdaBoost, Gradient Boosting and cluster analysis through k-Means, hierarchical clustering and Louvain clustering.

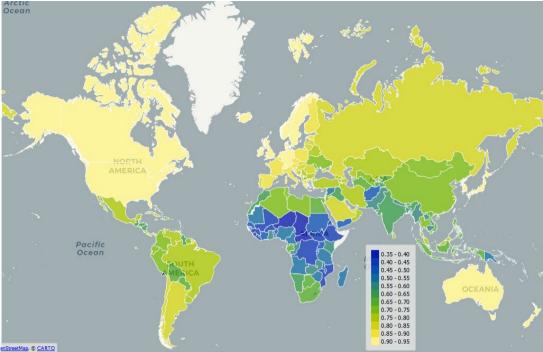

WORKFLOWS

Regression

Clustering

RESULTS

Regression


Sampling	Evaluat	ion Results						
Cross validation	N	lodel M	ISE RMSE	MAE	Ř2			
Number of folds: 5	Linear F	Regression 0.	.001 0.027	0.020	0.970			
Stratified	Gradier	t Boosting 0.	.001 0.028	0.021	0.967			
Cross validation by feature	AdaBoo	ost 0.	.001 0.032	0.023	0.957			
C Selected								
Random sampling								
 Random sampling Repeat train/test: 10 								
Repeat train/test: 10								
Repeat train/test: 10 Training set size: 66 %	`,L	omparison by MS	SE					
Repeat train/test: 10 Training set size: 66 % Stratified	`,L	omparison by MS	SE Linear Re	gression		Gradient Boosting	Ada	Boost
Repeat train/test: 10 Training set size: 66 % Stratified Leave one out	> Model C	omparison by MS Regression		gression	1	Gradient Boosting 0.376		Boost 134
Repeat train/test: 10 Training set size: 66 % Stratified Leave one out Test on train data	> Model C					-	0.	

R square value is about 0.96 - 0.97. The model is explainable up to 97 %, or the independent variables can explain up to 97% dependent variables.

• Clustering

CONCLUSION

The short-term training aims to broaden the students' interest in data-driven projects as a novel paradigm for knowledge discovery and business insights. In such a context, the training answers a series of questions that have arisen:

- What acts in the novel value-chain paradigm?
- What are the key technologies behind BDA?
- What tools and software enable meaningful insight from big data?
- What tools and software can be used for BDA with no or minimal coding skills?

Practical sessions make it possible to examine primary tasks such as regression, classification, clustering, and feature engineering by developing models using particular software tools. That deepens the knowledge of Big Data, Data Mining, and Machine Learning, opening horizons for uncovering new insights.

The learning results confirm that applied methods such as learning-by-doing and real-case-based training are appropriate when dealing with the multidisciplinary nature of a problem. Combining visual programming tools that require no or little coding knowledge in Python or R allows instructors to work with students who have no prior experience or basic knowledge of the subject. That also helps to pay attention to the principles, concepts, and applications of Big Data algorithms in various domains, illustrating the use cases, the need for team collaboration, and understanding what models are suitable for the particular problem and why. Then, we can keep going with advanced parameter optimizations to tune the model and achieve more accurate results.

Trainees have some difficulties with communicating the results and making detailed conclusions and recommendations, which we are addressing by changing the learning environment to be more informal, working in teams and discussions.

The students shared that after the workshop they have more clear ideas about data-driven applications and the methods and tools to uncover new knowledge from big data.

REFERENCES

Pedamkar, P. Orange Data Mining. [Online]. Available: https://www.educba.com/orange-data-mining/.

Erden, C. Orange Data Mining Tool and Association Rules, 11 May 2020. [Online]. Available: https://towardsdatascience.com/orange-data-mining-tool-and-association-rules-caa3c728613d.

Demšar, B. Z. J. Orange: Data mining fruitful and fun – A historical perspective, March 2013. [Online]. https://www.researchgate.net/publication/289842192_Orange_Data_mining_fruitful_and_fun_-_A_historical_perspective.

Orange Data Mining, 18 Feb 2020. [Online]. Available: https://towardsdatascience.com/tagged/orange-data-mining.

Orange Data Mining, [Online]. Available: https://www.javatpoint.com/orange-data-mining.

Orange Visual Programming Documentation, Release 3, [Online], Available: https://buildmedia.readthedocs.org/media/,

https://orange3.readthedocs.io/projects/orange-visual-programming/en/latest/index.html

Tableau Getting Started, [Online]. Available: https://github.com/arpitran/Tableau-Workshop-Getting-Started

Nair, A. A Hands-On Guide For Beginners. [Online], Available: https://analyticsindiamag.com/tableau-101-a-hands-on-guide-for-beginners/

Menasalvas, E. et al. (2021). Recognition of Formal and Non-formal Training in Data Science. In: Curry, E., Metzger, A., Zillner, S., Pazzaglia,

JC., García Robles, A. (eds) The Elements of Big Data Value. Springer, Cham. https://doi.org/10.1007/978-3-030-68176-0_13

Competency Framework for big data acquisition and processing. [Online], Available: https://unstats.un.org/bigdata/task-

teams/training/UNGWG_Competency_Framework.pdf

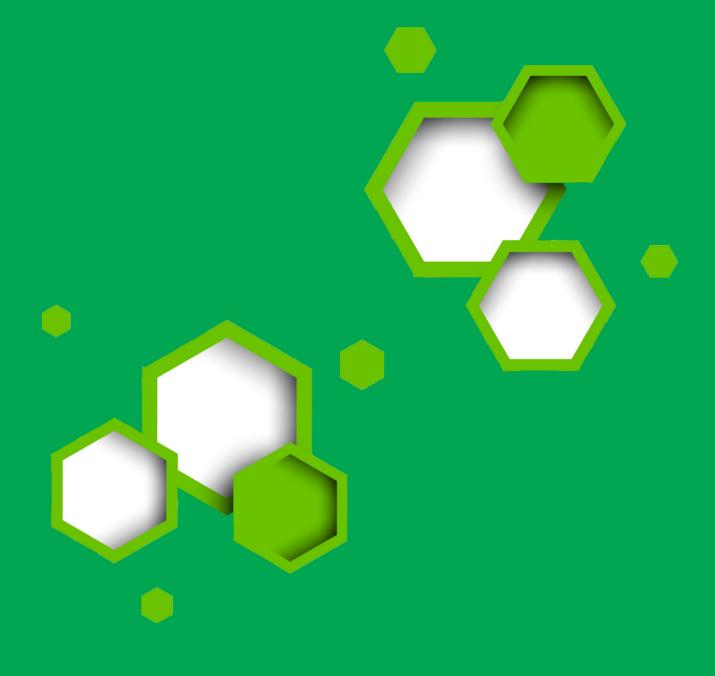
Select Hub. [Online], https://www.selecthub.com

Heart Disease Prediction, https://github.com/yash2189/Heart-Disease-Prediction-ML

Human Development Reports, https://hdr.undp.org/data-center/human-development-index#/indicies/HDI

Big Data Analitic Tools Study Guide

English First edition


Authors Lubomir Gotsev, Iva Kostadinova

Scientific Editor Vasyl Martsenyuk, Georgi Dimitrov

Graphic Design and Cover Lubomir Gotsev, Diana Stoyanova

Academic Publisher "Za bukvite – O pismeneh" ISBN 978-619-185-572-8 Sofia, 2022

ISBN 978-619-185-572-8